Numerical Solution of Lundquist Equations of Magnetohydrodynamics

نویسندگان

  • R. L. Johnston
  • S. K. Pal
چکیده

A method of bicharacteristics [3] is used to derive a numerical method for solving multidimensional nonlinear Lundquist equations of magnetohydrodynamics. Actual numerical computations are carried out to solve two specific problems of magnetohydrodynamics—the magnetohydrodynamic initial-pressure problem and a problem of cylindrical waves in a transverse magnetic field due to a thin current-carrying wire perpendicular to the plane of the fluid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical and Numerical Investigation of Second Grade Magnetohydrodynamics Flow over a Permeable Stretching Sheet

In this paper, the steady laminar boundary layer flow of non-Newtonian second grade conducting fluid past a permeable stretching sheet, under the influence of a uniform magnetic field is studied. Three different methods are applied for solving the problem; numerical Finite Element Method (FEM), analytical Collocation Method (CM) and 4th order Runge-Kutta numerical method. The FlexPDE software p...

متن کامل

Magnetohydrodynamics Fluid Flow and Heat Transfer over a Permeable Shrinking Sheet with Joule dissipation: Analytical Approach

A laminar, two dimensional, steady boundary layer Newtonian conducting fluid flow passes over a permeable shrinking sheet in the presence of a uniform magnetic field is investigated. The governing equations have converted to ordinary nonlinear differential equations (ODE) by using appropriate similarity transformations. The main idea is to transform ODE with infinite boundary condition into oth...

متن کامل

Dirichlet series and approximate analytical solutions of MHD flow over a linearly stretching ‎sheet

The paper presents the semi-numerical solution for the magnetohydrodynamic (MHD) viscous flow due to a stretching sheet caused by boundary layer of an incompressible viscous flow. The governing partial differential equations of momentum equations are reduced into a nonlinear ordinary differential equation (NODE) by using a classical similarity transformation along with appropriate boundary cond...

متن کامل

Prediction of Entrance Length for Magnetohydrodynamics Channels Flow using Numerical simulation and Artificial Neural Network

This paper focuses on using the numerical finite volume method (FVM) and artificial neural network (ANN) in order to propose a correlation for computing the entrance length of laminar magnetohydrodynamics (MHD) channels flow. In the first step, for different values of the Reynolds (Re) and Hartmann (Ha) numbers (600<ReL increases.

متن کامل

Numerical computation of viscous profiles for hyperbolic conservation laws

Viscous profiles of shock waves in systems of conservation laws can be viewed as heteroclinic orbits in associated systems of ordinary differential equations (ODE). In the case of overcompressive shock waves, these orbits occur in multi-parameter families. We propose a numerical method to compute families of heteroclinic orbits in general systems of ODE. The key point is a special parameterizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010